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Abstract

This study analyzes how interface resistance a�ects heat transfer in a two-layered composite media under an
incident pulse energy exerting on the exterior surface of one layer by using the hyperbolic heat conduction equation.
The incident energy is absorbed and a pulse width temperature wave is generated within the skin depth of the ®rst
layer, which subsequently emanates to the second layer. Re¯ection and transmission occur when the initial pulse

wave impacts the contact surface of the dissimilar material. In addition, the radiation-boundary-condition model
based on Acoustic Mismatch Model or Di�use Mismatch Model is used to predict the interface resistance. Analysis
results indicate that the re¯ection±transmission combination phenomena strongly depend on the interface condition.

Moreover, the thermal resistance restricts the energy transmission across the interface, creating a temperature
di�erence at the interface and ultimately alerting the re¯ected wave feature. Our results further demonstrate that the
critical thermal resistance magnitude to approach the perfect contact condition varies with the two-layered

properties ratio and the absorption skin depth. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interface thermal resistance profoundly in¯uences

the design and performance of a variety of devices

making use of composite materials such as thin-®lm

superconductors, micro-electronics layers package, ®ns,

as well as numerous applications. Most analyses of

heat transfer in a composite media treat conduction as

a di�usion process which is related through Fourier's

law. Those results con®rm that the interface resistance

seriously a�ects the heat transfer mechanism [1±3].

Fourier's law analysis suggests that an in®nite speed of

propagation of the thermal wave yields reliable results
under most circumstances. However, recent investi-

gations involving an extremely low temperature near
absolute zero, extremely short transient duration,
microstructures, and extremely high-rate change of
temperature or heat ¯ux have indicated that the heat

propagation velocity under such circumstances
becomes ®nite and dominant [4±7].
While considering the ®nite speed of wave propa-

gation, Cattaneo [8] and Vernotte [9] separately pro-
posed a modi®ed heat ¯ux model in the form of

q�r,t� t� � ÿkrT�r,t� �1�

Based on the collision theory of molecules, the relax-

ation time t is approximated to a=c2 [10]. Clearly, for
t � 0, Eq. (1) reduces to the classical di�usion theory,
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leading to an in®nite propagation velocity. When Eq.

(1) is used in a local energy balance, a hyperbolic

equation is derived. Temperature ®elds obtained from

hyperbolic heat conduction equation display wavelike

characteristics that the traditional di�usion theory can

not predict [11]. Recently, Mitra et al. [12] demon-

strated that the temperature in a biological material is

directly validating the hyperbolic natural of heat con-

duction with the non-Fourier predictions. In addition,

the time lag between heat ¯ux and the temperature

gradient is related to the microscopic heat transfer

behavior when the response time becomes extremely

short [13]. Tzou [13] collected the following heat trans-

fer models on a microscopic basis: thermal wave

model, two-step model, phonon scattering model, and

phonon radiative transfer model. Recently, Chen [14]

proposed a model based on acoustic wave propagation

for the phonon transport across a thin ®lm. The ther-

mal wave theory can be derived from the two-step

model [15,16] and phonon radiative transfer model [17]

for acoustically thick ®lms. Other investigators have

applied the thermal wave model to heat transfer in

thin ®lm conductors [18,19].

For engineering applications of thermal wave theory,

OÈ zisik and Tzou [20] thoroughly reviewed thermal

wave propagation which included the sharp wave front

and rate e�ects, thermal shock phenomenon, and ther-

mal resonance phenomena. Various analytical methods

have been proposed to elucidate the re¯ection, refrac-

tion, and transmission of thermal waves across a ma-

terial interface. Frankel et al. [21] proposed a ¯ux

formulation to investigate the thermal waves in a com-

posite media with a perfect contact interface. Tzou [22]

performed harmonic analysis to examine the re¯ection

and refraction thermal wave patterns from a surface

and an interface between dissimilar materials. Previous

investigations did not consider thermal resistance at

the interface. Bai and Lavine [23] treated thermal re-

sistance as a jump boundary condition of a thin layer.

The new boundary conditions signi®cantly a�ect the

thermal wave solution [23,24]. However, the re¯ection

and transmission phenomena related to the properties

of each layer in the composite media [21], which can

not be accurately predicted using a single layer with a

jump boundary condition. To our knowledge, no work

has thoroughly investigated re¯ection/transmission of

thermal wave in a composite media with interface re-

sistance.

Little [25] predicted the thermal resistance by treat-

ing the phonons as plane waves and, in doing so, pro-

posed the acoustic mismatch model (AMM). An

underlying assumption of the AMM is that no scatter-

ing occurs at the interface. Swartz and Pohl [26] not

only assumed that di�use scattering destroys acoustic

e�ects at interface, but also proposed the di�usive mis-

match model (DMM) as well. The AMM is applicable

when ld=s� 1, where ld is the dominant phonon

wavelength, and s is the mean interfacial roughness.

Nomenclature

c thermal wave speed
Cp speci®c heat capacity
e thermal incident energy

h Planck's constant
k thermal conductivity
kB Boltzmann constant

q heat ¯ux
q heat ¯ux vector
r position vector

Q total energy
t time
T temperature
T0 initial temperature
�v sound velocity
W characteristics variable
x position

r density
a thermal di�usivity
t relaxation time

l eigenvalue
ed non-dimensional incident energy

dx skin depth
k constant; see Eq. (5)
G constant; see Eq. (5)

DTc temperature di�erence at interface, T1c ÿ T2c

ld dominant phonon wavelength
s mean interfacial roughness

Superscripts
� dimensionless variable
n, n� 1 time levels n and n� 1
iter iteration

Subscripts
1 layer 1
2 layer 2

c interface
i control volume index
i21=2 value at control volume faces
j layer index

r ratio
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However, when ld=sR1 the DMM should be
employed [3,26]. Both models are in the same form as
the radiation boundary condition, where the heat ¯ow

across the interface is proportional to the di�erence of
the fourth power of the temperature on each side of
the interface. In this study, we use the radiation-

boundary-condition at the interface, which can be
applied to either AMM or DMM, to consider the
interface resistance. Also examined herein is how ther-

mal resistance a�ects the wave propagating in a com-
posite media. Analysis results indicate that the thermal
resistance restricts the energy transmission across the
interface, thereby in¯uencing the wave patterns and

their related strengths signi®cantly.

2. Physical model and theoretical analysis

Fig. 1 shows the composite medium which consists
of two di�erent materials in layer 1 and layer 2. A
pulsed incident energy exerts itself on the front surface
of layer 1 and is absorbed within a skin depth of dx of

layer 1. This system is highly promising for advanced
semiconductor processing or laser annealing [27±30].
At time = 0+, the thermal energy within dx is released

and then emanates into the second layer.
By applying the Taylor's series expansion to q in Eq.

(1) with respect to t, the linearized constitutive

equation and energy conservation equations are writ-
ten as

q�x,t� � t
@q�x,t�
@ t

� ÿkrT�x,t�: �2�

rCp
@T�x,t�
@ t

� r � q�x,t� � 0: �3�

When the radiation-boundary-condition model is

employed, the continuity of interface heat ¯ux becomes
[25,26]

q1c � q2c � k
ÿ
T 4

1c ÿ T 4
2c

� �4�

where

k � 2pk4BG
h3 �v2

�
p4

15

�
�5�

The most important constant is G, a function of the

material properties of the two media in contact, which
can be obtained if the density ratio and the sound vel-
ocity ratio of two media are known [25]. A large value

of G represents a high transmission across the inter-
face, i.e., a low boundary resistance. Eqs. (4) and (5)
can be applied to both AMM and DMM, with the

exception of a di�erent value of G in a di�erent model.
The DMM predicts a larger value of G than AMM
[26].
For convenience, in the subsequent analysis, the

non-dimensional variables are de®ned in the trans-
formed system as follows:

x � � c1x

2a1
, t� � c21t

2a1
, T �j �

Tj ÿ T0

T0
,

q�j �
a1qj

T0k1c1
, k� � kT 3

0a1
k1c1

�6�

and the dimensionless property ratios

a�j �
aj
a1

, t�j �
tj
t1
, k�j �

kj
k1

�7�

where j � 1 and 2 represent layer 1 and layer 2, re-
spectively. Clearly, we have a�1 � t�1 � k�1 � 1. The
energy equation and non-Fourier constitutive equation

are expressed in terms of the above dimensionless vari-
ables as (with asterisks omitted)

@Tj

@ t
� 1

kj

1

aj

@qj
@x
� 0 �8�

@qj
@ t
� kj

tj

@Tj

@x
� ÿ2 1

tj
qj �9�

The non-Fourier constitutive equation along with the
energy equation for each layer can be written in

dimensionless vector form as

@Uj

@ t
� @Fj

@x
� Sj, �10�

where

Fig. 1. Schematic diagram of the physical system.
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Uj �
�
Tj

qj

�
, Fj �

8>>><>>>:
1

kj

1

aj
qj

kj
tj
Tj

9>>>=>>>;,

Sj �

8><>:
0

ÿ2 1
tj
qj

9>=>;:
�11�

Eq. (10) can be written

@Uj

@ t
� �A�j @Uj

@x
� Sj �12�

and the Jacobian matrices are

�A�j� @Fj

@Uj
�13�

Then, �A�j can be diagonalized through the eigenvec-
tors

�A�j� �R�j�l�j�R�ÿ1j �14�

where l denotes the diagonal matrices consisting of

two eigenvalues of [A ] for each layer. Superscript ÿ1
represents the inverse eigenmatrix. The diagonal
matrices and the right eigenmatrices reveal that

�l�j�

266664
ÿ
�aj
tj

�1=2

0

0

�aj
tj

�1=2

377775 �15�

�R�j�

264 1 1

ÿkj
�
1

aj

1

tj

�1=2

kj

�
1

aj

1

tj

�1=2

375 �16�

The interface condition of Eq. (4) becomes the dimen-

sionless form of

q1c � q2c � k
�
�T1c � 1�4ÿ�T2c � 1�4

�
�17�

The initial state of the medium is taken at the equil-
ibrium temperature T0. Thus, the dimensionless initial
conditions are given as

t � 0, T � q � 0: �18�

At time = 0+, the thermal energy symbol ed of width

dx is released. Immediately after the release of the
thermal disturbance, leading to an additional initial
condition for temperature�dx
0

T dx � ed, i:e:

T �
8<:

ed

dx
, 0RxRdx

0, otherwise
for t � 0� �19�

ed � ec1
2r1Cp1a1T0

�20�

The above equations are now considered subject to the

insulated exterior surfaces.

3. Numerical method

This study adopts the characteristics-based numeri-
cal method developed by Yang [31] to solve the system
of equations, which resolves the thermal wave without

introducing oscillation or dissipation. First, multiply
Eq. (12) by �R�ÿ1j , then obtain

@W j

@ t
� @Mj

@x
� Gj �21�

where

�W�j� �R�ÿ1j ��U�j, �M�j� �l�j��W�j,

�G�j� �R�ÿ1j ��S�j �22�

Now, the problem attempts to solve the characteristics

variable [W ], instead of the original coupled equations
for T and q. Then, Eq. (21) is expressed by the ®nite
di�erence with the explicit formulation. Therefore, we

have

W iter
i � Wn

i ÿ
Dt
Dx
ÿ
Mn

i�1=2 ÿMn
iÿ1=2

�� DtGiter
i �23�

where Dx � x i�1=2 ÿ x iÿ1=2, and Dt � tn�1 ÿ tn.
Superscript `iter' denotes the iteration value at new
time step of �n� 1).

The total variation diminishing scheme [31] is used
to compute the characteristic variable [W ] of the in-
terior points. Moreover, a simple and accurate numeri-

cal algorithm presented by Yeung and Lam [32]
applying the Godunov method is employed to compute
the [W ] value at the point next to the boundaries.
Initially, the interface temperatures of two layers

(T1c and T2c) are in equilibrium with a dimensionless
temperature of 0. Iterations between heat ¯ux and tem-
perature for all of the grids at each time step are pro-

ceeded with until the criterion of convergence is met.
The T1c and T2c at time step n are used to calculate
the interface heat ¯ux for time step �n� 1). Based on

this interface heat ¯ux value, the new iteration T and q
values of layer 1 are obtained. The interface heat ¯ux
is updated by the new iteration value of T1c. Then,
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based on the updated interface heat ¯ux, new iter-
ations for T and q values of layer 2 are obtained. The
procedure is repeated until the T and q values in the

composite media are valid for the criterion of conver-
gence����Tÿ T iter

T

����
max

R10ÿ5 and

�����qÿ qiter

q

�����
max

R10ÿ5 �24�

Then, the new values of T and q of both layers at the
time �n� 1� can be evaluated.

4. Results and discussion

A one-dimensional computer code was written based

on the above calculation procedure. Grid re®nement
and time step sensitivity studies were also performed
for the physical model to ensure that the essential

physics are independent of grid size and time interval.
The pulsed incident energy is absorbed by skin depth
dx. The emanating temperature in dx at t � 0� is

inverse with skin depth for a constant incident energy.
By choosing the ed � 0:5, we obtain

T �

8><>:
1

2dx
, 0RxRdx

0, otherwise

for t � 0� �25�

To simplify this task, the property ratios of a and t of

two layers are set to unity. In addition, layer 1 and
layer 2 are assumed to be of equal length, and the
total non-dimensional length is set to unity. In particu-
lar, for metal at the room temperature, the a010ÿ4

m2/s, t010ÿ12 s, c0105 m/s [16], the physical space
and time scales to correspond dimensionless x � 1 and
t � 1 are in the order of 1 nm and 0.01 ps, respect-

ively.
Fig. 2 illustrates the heat ¯ux and temperature distri-

bution for various interface conditions. The hyperbolic

heat conduction equation predicts that a thermal wave
disturbance tends to propagate in a given direction
until the wall or barrier impedes its course. Initially,

Fig. 2. Heat ¯ux and temperature distributions at t � 0:1 and

0.7 for various interface conditions with dx � 0:05, k2 � 0:1.
Rbd � 0 represents the perfect contact interface.

Fig. 3. Heat ¯ux distributions at a sequence of times for

various interface conditions with dx � 0:05, k2 � 10. Rbd � 0

represents the perfect contact interface.
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owing to the re¯ection of the pulse wave from the

insulated surface at x � 0, the wave width is doubled.

This causes the leading edge of the wave front to

impact at the contact interface and starts to re¯ect and

transmit at t � 0:45. Before this occurs, the tempera-

ture and heat ¯ux distributions are identical for each k
value, as attributed to that the wave front is unaware

of the condition at the interface. At t � 0:7, the

re¯ected wave travels towards the left and the trans-

mitted wave travels towards the right; both waves

retain the initial waveform. Since k2 < k1, the energy is

restricted to transmit into layer 2 and most of the

energy is re¯ected back to layer 1 even the contact

interface is in perfect condition. With the interface re-

sistance, the transmitted heat ¯ux strength decreases

with a decrease of k. The opposite situation occurs for

the heat ¯ux in the re¯ected portion on the basis of

energy conservation. For the temperature distribution,

the heat capacity of rCp changes proportionally to k

when a is held constant. Therefore, the discrepancies in

induced temperature between di�erent k values in the

transmitted portion are more signi®cant than the

re¯ected portion due to k2 < k1. In addition, the inter-

face temperature continuity breaks down when thermal

resistance exists. The temperature jump at the interface

is attributed to the reduction of layer 2 interface tem-

perature from the perfect contact value. Figs. 3 and 4

display the heat ¯ux and temperature distribution, re-

spectively, at various time intervals. By e�ect of di�-

usion, a small residual temperature in the wake of pro-

pagating wave, a slant across the top of wave and the

waves strength attenuate with time are observed in

Fig. 3(a) and (b) and Fig. 4(a) and (b). After the initial

wave impact of the interface, Frankel et al. [21] indi-

cated that k2 > k1 causes more energy to enter layer 2,

thereby creating the negative re¯ected temperature

wave based on the energy conservation for perfect con-

tact interface. However, despite the transmitted energy

ability of the environment is enhanced for k2 > k1, the

re¯ected wave in Figs. 3(c) and 4(c) may be positive or

negative in magnitude, depending on the interface con-

dition. The temperature discrepancies between di�erent

k values in re¯ected portion are more signi®cant than

those in transmitted portion due to k1 < k2. In ad-

dition, the temperature di�erence at the interface is

attributed to the increase of layer 1 interface tempera-

ture from perfect contact value by the e�ect of thermal

resistance. Bai and Lavine [23] used a jump tempera-

ture as the boundary condition of a thin layer to simu-

late the interface resistance. This treatment may not be

satisfactory when k1 < k2. By t � 1:3, a pure re¯ection

has occurred at the insulated external boundaries

which do not allow the energy to be transmitted

through the surfaces. Thus, the heat ¯ux waves are

converted into inverse wave front (Fig. 3(d)); tempera-

ture waves remain in the original wave front (Fig.

Fig. 4. Temperature distributions at a sequence of times for

various interface conditions with dx � 0:05, k2 � 10. Rbd � 0

represents the perfect contact interface.

Fig. 5. E�ect of interface condition on temperature at t � 0:7
with dx � 0:05, k2 � 10.
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4(d)) moving towards the interface. According to Figs.
3(e) and 4(e), the waves impact the interface again by

t � 1:7. This impact appears to combine the two waves
emanating from di�erent layers ultimately forming a

single wave moving towards the origin for a perfect
contact interface [21]. However, the re¯ection and

transmission phenomena occur again when thermal re-

sistance exists at the interface. The re¯ection±trans-
mission combination persists until di�usion dominates

in both layers.

Fig. 5 presents the temperature distribution for
various interface conditions at t � 0:7. The temperature

di�erence at interface which increases with a decrease
of k is owing to that less energy is transmitted into

layer 2 for lower k values. In the re¯ected portion, our

results indicate the transition of the re¯ected waves
from negative sign to positive sign with the variation

of k value. Herein, the wave consisting of a dimension-
less temperature lower than the initial value of 0 is

designated as a negative wave. The re¯ected wave
changes its sign from a negative sign at k � 0:02 to a

positive one when the resistance magnitude reaches a k
value of 0.01. This ®nding implies that the interface re-
sistance is equivalent to reducing the transmit energy

ability of the environment. The transmit energy ability
of the environment at k2 � 10 is equivalent to reducing

to k2 � 1 at k � 0:01, as evidenced by the fact that the
re¯ected wave temperature is nearly the same as the re-

sidual value in the wake of propagating wave.

Fig. 6 illustrates the dimensionless total energy as
time elapses for di�erent values of k. The total energy

Q1 and Q2 can be obtained from the spatial integral of

rCpT in the entire area of layer 1 and layer 2, respect-
ively. The leading edge of the initial pulsed wave front

impacts at the interface at t � 0:45. After a dimension-

less time interval of 1, the waves re¯ected by the ex-

terior insulated surfaces impact the interface again. At

these moments, the total energy abruptly changes. For

the remaining times, the total energy gradually

changing with time is attributed to that the residual

energy in the wake of propagating wave exchanges a

slight amount of energy across the interface. The

energy exchange between the two di�erent layers heav-

ily depends on the interface conditions. Our results

clearly demonstrate that when the interface resistance

is neglected, the Q1 value which can represent the aver-

age temperature of layer 1 is signi®cantly underesti-

mated. Notably, owing to that the external boundaries

are insulated for all time intervals, the total energy

content in the composite media �Q1 �Q2� remains con-

stant and equals the incident energy of 0.5. A situation

in which Q2 is greater than 0.5 implies not only that

the total incident energy, but also that the initial in-

ternal energies of layer 1 are transmitted into layer 2.

However, the extra energy gained from the internal

energy of layer 1 is transmitted back to layer 1 when

the waves are re¯ected by the exterior surfaces and

impact the interface. Eventually, the Q2 value is less

than the total incident energy. In addition, the energy

exchange decreases with time due to the e�ect of di�-

usion and the heat transfer across the interface is

proportional to the di�erence of the fourth power of

temperature on each side of the interface.

Fig. 7 depicts the relationship between total energy

Q2 and k2 for di�erent interface conditions to demon-

strate the e�ect of k2 and k on the energy transmission.

The Q2 values are taken at t � 0:7. For a speci®ed

Fig. 6. Total energy versus time for various interface con-

ditions with dx � 0:05, k2 � 10. Rbd � 0 represents the perfect

contact interface.

Fig. 7. Total energy of layer 2 at t � 0:7 vs. k2 for various

interface conditions with dx � 0:05. Rbd � 0 represents the

perfect contact interface.
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interface condition, increasing k2 enhances the transmit
energy ability of the environment. However, the

induced temperature magnitude in layer 2 decreases
with an increase of k2, since the heat capacity of rCp

changes in proportion to k when a is held constant.

The limiting case is when the layer 2 temperature
approaches zero for a su�ciently large k2 value.
Beyond this k2 value, the Q2 is independent of the vari-

ation of k2 for each constant k. This critical k2 value
increases with an increase of k.
Fig. 8 illustrates the relationship between Qr2 and

DTc with k at t � 0:7. Where Qr2 is the relative energy
transmission ability, i.e., the ratio of the total energy
transmitted across the resistance interface into layer 2
to the value across the perfect contact interface. In ad-

dition, DTc denotes the temperature di�erence at inter-
face, i.e., T1c ÿ T2c. When Qr2 approaches unity, the
interface is in a nearly perfect condition. In contrast,

no energy can be transmitted across the interface when
Qr2 approaches zero. Notably, the increasing rate of
Q2 with k2 in perfect contact interface is reduced by re-

sistance. Such a reduction causes the Qr2 to decrease
with an increase of k2 for a constant k value.
Moreover, the limiting k value for approaching the
perfect contact interface where Qr241 and DTc40

increases with an increase of k2. The Qr240
approaches the adiabatic interface when k110ÿ5.
Meanwhile, a high DTc value is observed.
This study also attempts to understand the in¯uence

of absorption skin depth dx under a ®xed incident

energy. Fig. 9 illustrates the Q2 as time elapses for
di�erent values of dx. Owing to that a higher tempera-
ture wave is released in a thinner dx at t � 0�, the Q2

abruptly increases from zero to a value which increases
with a decrease of dx at the moment when the initial
pulsed wave impacts the interface. After time interval

of 1, the waves re¯ected from exterior adiabatic sur-

Fig. 8. Total energy ratio of layer 2 and temperature di�er-

ence at interface at t � 0:7 versus interface conditions for

various k2 with dx � 0:05.

Fig. 9. Total energy of layer 2 versus time for various skin

depth dx with k � 10ÿ3.

Fig. 10. E�ect of skin depth dx on temperature at t � 0:7
with k2 � 10, k � 10ÿ3.
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faces impact the interface again. At this moment, the

energy transmits back to layer 1 for k2 � 0:1, which is

in contrast to the occurrence for k2 � 10 that layer 2

gain more energy. The e�ect of di�usion and energy

transmission weakens the wave strength. Thereafter,

the energy does not abruptly change when the waves

impact the interface.

Fig. 10 presents the temperature distribution at t �
0:7 for three di�erent dx. The di�erent energy trans-

mitted across the interface into layer 2 for di�erent dx
indicates that the equivalent k2 varies with dx. The

transmission energy across the interface restricted by

the thermal resistance with a k value of 10ÿ3 is equiv-

alent to reducing the k2 � 10 to a value greater than

unity for dx � 0:01, which re¯ects a negative sign wave

and to the values less than unity for dx � 0:02 and

0.025, which re¯ects the positive sign waves. In ad-

dition, the temperature di�erence at the interface

increases with dx, which corresponds to a decrease of

the energy transmission across the same interface con-

dition with an increase of dx.
Fig. 11 illustrates the energy consisting of layer 2 at

t � 0:7 varied with dx. For the same interface con-

dition, the energy transmit across the interface depends

on the initial pulsed temperature strength which is re-

lated to dx, and the transmit energy ability of the en-

vironment which is related to k2. Due to the weak

transmit energy ability of the environment when k2 is

small, the energy discrepancies between the di�erent

skin depths is insigni®cant. In addition, for a large dx
in which an initial pulsed temperature strength is

weak, the energy discrepancies between the di�erent k2
are less signi®cant than those for a small dx. Notably,

the relationship of energy transmission to dx for k2 �

10 is the same as that with k2 � 100, indicating that

k2 � 10 is greater than the critical k2 value at

k � 10ÿ3. Beyond this value, the total energy in layer 2

is independent of the variation of k2 for each k value,

as described earlier in Fig. 7.

Fig. 12 presents the regime map for the perfect con-

tact interface for di�erent dx. For an individual k2,

when the energy across the interface with a resistance

magnitude k is 95% of the value across the perfect

contact interface, then the critical k which approaches

the perfect contact interface is obtained. The total

energy value in layer 2 at time t � 0:7 is adopted to

asses the energy across the interface. When the inter-

face resistance magnitude k is above the loci, the e�ect

of the resistance is negligible. Consequently, the inter-

face can be treated as a perfect condition. On the

other hand, the e�ect of the interface resistance should

be considered when the resistance magnitude k is

below the loci. Notably, even if the interface is in per-

fect condition, only a slight amount of energy can be

transmitted into layer 2 when k2 is su�ciently small.

This accounts for why the discrepancy between the

energy across perfect contact interface and across re-

sistance interface is relatively minor. Thus, for a small

k2, the interface can be treated as a perfect condition

even with a heavy resistance interface (small k value).

With a constant absorption skin depth, the critical k
to approach the perfect contact interface increases with

the conductivity ratio of layer 2 to layer 1. In addition,

owing to that the transmitted energy is inversely pro-

portional to the skin depth, the critical k value to

approach the perfect contact case increases with the

absorption skin depth when the conductivity ratio is

held constant.

Fig. 11. E�ect of skin depth dx on total energy of layer 2 at

t � 0:7 for various k2 with k � 10ÿ3.
Fig. 12. Regime map of perfect contact interface for various

skin depth dx.
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5. Conclusions

By applying hyperbolic heat conduction, this study
analyzes how the interface thermal resistance a�ects
the thermal wave propagation in a two-layered com-

posite media. The radiation heat ¯ux model (either
AMM or DMM) is used to examine the interface ther-
mal resistance.

The re¯ection and transmission occur when the in-
itial pulse wave impacts the contact surface of dissimi-
lar materials. In addition, the thermal resistance

restricts the exchanges of energy between two dissimi-
lar layers, ultimately creating a temperature di�erence
at the interface. The temperature di�erence at interface
is attributed to the reduction layer 2 interface tempera-

ture from perfect contact value when k2 < k1. In con-
trast, layer 1 interface temperature arises from perfect
contact value when k2 > k1. The relative strengths of

re¯ected wave and transmitted wave varies with the
interface conditions, two-layered property ratio, and
the absorption skin depth. Although the energy trans-

mitted across the interface signi®cantly increases with
the decrease of the absorption skin depth when
k2 > k1, it is not signi®cantly a�ected by the variation

of skin depth when k2 < k1.
Analysis results further demonstrate that thermal re-

sistance not only mediates the energy transform from
one layer to the other, but also markedly in¯uences

the thermal wave transmission±re¯ection-combination
phenomena. The negative wave, which is re¯ected by
the perfect contact interface when k2 > k1, may change

its sign when considering the interface resistance.
Moreover, the e�ect of the thermal resistance can be
neglected when the resistance magnitude is beyond a

critical value. The critical resistance magnitude to
approach the perfect contact condition increases with
the absorption skin depth and conductivity ratio of k2
to k1.
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